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ABSTRACT
Modern recommender systems leverage large-scale retrieval models
consisting of two stages: training a dual-encoder model to embed
queries and candidates in the same space, followed by an Approxi-
mate Nearest Neighbor (ANN) search to select top candidates given
a query’s embedding. In this paper, we propose a new single-stage
paradigm: a generative retrieval model which autoregressively de-
codes the identifiers for the target candidates in one phase. To do
this, instead of assigning randomly generated atomic IDs to each
item, we generate Semantic IDs: a semantically meaningful tuple of
codewords for each item that serves as its unique identifier. We use
a hierarchical method called RQ-VAE to generate these codewords.
Once we have the Semantic IDs for all the items, a Transformer
based sequence-to-sequence model is trained to predict the Se-
mantic ID of the next item. Since this model predicts the tuple of
codewords identifying the next item directly in an autoregressive
manner, it can be considered a generative retrieval model. We show
that our recommender system trained in this new paradigm im-
proves the results achieved by current SOTAmodels on the Amazon
dataset. Moreover, we demonstrate that the sequence-to-sequence
model coupled with hierarchical Semantic IDs offers better gen-
eralization and hence improves retrieval of cold-start items for
recommendations.
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Orange shoes, Brand X
Atomic Item ID: 233

Red shoes, Brand Y
Atomic Item ID: 515

Orange shoes, Brand Y
Atomic Item ID: 64

Semantic ID
Generator

(5, 23, 55) (5, 25, 78) (5, 25, 55)

Item Lookup

Generative 
Retrieval

User History Next item

Figure 1: High-level overview of Transformer Index for GEnerative
Recommenders (TIGER) framework. TIGER proposes representing
an item as a tuple of discrete semantic tokens (referred to as Seman-
tic ID), which allows framing the sequential recommendation task
as a generative task such that the Semantic ID of the next item is
directly predicted using a sequence-to-sequence model.
(Conference acronym ’XX). ACM, New York, NY, USA, 12 pages. https://doi.
org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recommender systems help users discover content of interest and
are ubiquitous in various recommendation domains such as video [3,
9, 45], app [2], product [6, 8], and music [18, 19]. Modern recom-
mender systems adopt a retrieve-and-rank strategy, where a set of
viable candidates are selected in the retrieval stage, which are then
ranked using a ranker model. Since the ranker model works only
on the candidates it receives, it is desired that the retrieval stage
emits highly relevant candidates.

There are standard and well-established methods for building
retrieval models. Matrix factorization [19] learns query and can-
didate embeddings in the same space. In order to better capture
the non-linearities in the data, dual-encoder architectures [39] (i.e.,
one tower for the query and another for the candidate) employing
inner-product to embed the query and candidate embeddings in
the same space have become popular in recent years. To use these
models during inference, an index that stores the embeddings for
all items is created using the candidate tower. For a given query, its
embedding is calculated using the query tower, and then an Approx-
imate Nearest Neighbors (ANN) algorithm is used to choose the
nearest candidates. On the other hand, sequential recommenders
[6, 11, 17, 23, 30, 43, 46], which explicitly take into account the
order of user-item interactions, are also recently popular. They also
typically use softmax in the output layer when training and resort
to using ANN during inference.

We propose a new paradigm of building generative retrieval
models for sequential recommenders. Instead of traditional query-
candidate matching approaches, our method is uses an end-to-end
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(a) Semantic ID generation for items using quantization over con-
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t_25 t_55

Next Item

(b) The proposed Transformer based Encoder-Decoder setup for building the sequence-
to-sequence model used for generative retrieval.

Figure 2: A high-level overview of the modeling approach used in TIGER.

generative model that predicts the candidate IDs directly - dis-
pensing the need for any discrete, non-differentiable inner-product
search system or index altogether. Using autoregressive decoding
[26, 27] and beam search [31, 38], we can retrieve several viable can-
didates. In this case, we can interpret the Transformer [35] memory
(parameters) as an end-to-end recommendation index, reminiscent
of Tay et al. [33]. As such, we name our proposed method TIGER,
short for Transformer Index for GEnerative Recommenders. A high-
level overview of TIGER is shown in Figure 1.

Critically, TIGER is characterized by a new approach to represent
each item by a novel "Semantic ID": a sequence of tokens based on
the content information about the item (such as its text description).
Concretely, given an item’s text description, we can use pre-trained
text encoders (e.g., SentenceT5 [25]) to generate dense content
embeddings. A quantization scheme can then be applied over the
embeddings to form a small set of tokens/codewords (integers). We
refer to this ordered tuple of codewords as the Semantic ID of the
item. We derive inspiration for this idea from human language,
where we have words for concepts and string together words to
convey complex ideas. Similarly, we want to develop a language for
IDs to represent items. This way, we can represent billions of items
using a sequence of limited sets of words (tokens), in contrast to
randomly generated atomic IDs requiring one ID per item.

Notably, similar ideas have been adopted when generating im-
ages from text (e.g., Parti [41]), where images are represented as
tokens using ViT-VQGAN [40]. One crucial difference is that in im-
age generation, a few incorrect tokens lead to a small error or noise
in the image. In contrast, a single incorrect token here would mean
that the recommender system predicts a different or non-existent
item.

There are many benefits to using these Semantic IDs. The num-
ber of users and items in modern recommender systems can be
in the billions. Thus the embedding tables of ANN-based models
can become prohibitively large when using 1:1 mapping between
atomic IDs and embedding vectors. Not only does this require a
huge memory and storage footprint, but it also leads to imbalance
when training the embeddings of the items, where popular items
will be over-sampled as compared to infrequent ones [39]. As such,
it is common practice to maintain dedicated vocabulary for more
popular items and randomly hash remaining items in a fixed set of

buckets[16]. However, the hashing scheme leads to random colli-
sions. As new items are introduced in real-world recommendation
products, the random collisions could aggravate the cold-start prob-
lem. In contrast, our method requires maintaining an embedding
table for only a small set of tokens. Furthermore, the collisions in
our case are semantically meaningful, which helps mitigate the
cold-start problem.

We summarize the main contributions of this work below:

(1) We propose TIGER, a novel generative retrieval-based rec-
ommender model, which first assigns unique Semantic IDs
to each item, and then trains a retrieval model to predict
the Semantic ID of the next item the user will engage with.
This provides an alternative to the high-dimensional near-
est neighbor search-based or softmax-based recommender
systems.

(2) We show that TIGER outperforms existing SOTA recom-
mender systems’ recall andNDCGmetrics onmultiple datasets.

(3) We find that this new paradigm of generative retrieval leads
to two extra capabilities in sequential recommender systems:
1. Being able to recommend new and infrequent items, thus
improving cold-start problems, and 2. Being able to generate
diverse recommendations using a tunable parameter.

Paper Overview. In Section 2, we provide a brief literature sur-
vey of the techniques used in recommender systems, generative
retrieval, and the particular Semantic ID generation techniques we
use in this paper. In Section 3, we explain our proposed framework,
outline the various techniques we use for Semantic ID generation,
and provide the results of our experiments in Section 4. We provide
further discussions about our work along with some insights in
Section 5 and conclude the paper in Section 6.

2 RELATEDWORK
Sequential Recommenders. Using deep sequential models in rec-

ommender systems has developed into a rich literature. GRU4REC
[11] was the first to use GRU based RNNs for sequential recommen-
dations. Li et al. [23] proposed NARM (Neural Attentive Session-
based Recommendation), where they used the attention mecha-
nism along with a GRU layer to track both the long term and the
current intent of the user. AttRec [43] proposed by Zhang et al.
used the self-attention mechanism to model the user’s intent in
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the current session, and added personalization by modeling user-
item affinity separately using metric learning. Concurrently, Kang
et al. proposed SASRec [17], which used self-attention similar to
decoder-only transformer models.

Inspired by the success of masked languagemodeling in language
tasks, BERT4Rec [30] and Transformers4Rec [6] utilize transformer
models with masking strategies for sequential recommendation
tasks. S3-Rec [46] goes beyond just masking by pre-training on four
self-supervised tasks to improve data representation. In a concur-
rent work to us, Hou et al. propose VQ-Rec [12], which generates
“codes” (analogous to Semantic IDs that we use) using content infor-
mation to represent items. Their focus is on building transferable
recommender systems, and do not use the codes in a generative
manner for retrieval. While they use product quantization [15] to
generate the codes, we use RQ-VAE to generate the Semantic ID.

All of themodels described above learn a separate high-dimensional
embedding for each item and then perform an ANN or Maximum
Inner Product Search (MIPS) to predict the next item. In contrast,
our proposed technique, TIGER, uses Generative Retrieval to di-
rectly predict the Semantic ID of the next item. P5 [8] and M6 [4]
fine-tune pre-trained large language models, to get multi-task rec-
ommender systems that output token-by-token the recommended
item. For P5, the model relies on the tokenizer used by the LLM
(SentencePiece tokenizer [29]) to generate tokens out of item IDs
that are non-semantic in nature. M6, on the other hand, directly out-
puts the name of the recommended item, token-by-token. We use a
more principled way of generating Semantic IDs, based on content
information, that is compatible with most existing sequence-to-
sequence models and show in Table 3 that our proposed approach
yields much better results than using tuples of random codes.

Generative Retrieval. Generative retrieval is a recently devel-
oped approach for Document Retrieval in the NLP community,
where the task is to return a set of relevant documents from a data-
base. Document retrieval traditionally involved training a 2-tower
model which mapped both queries and documents to the same
high-dimensional vector space, followed by performing an ANN or
MIPS for the query over all the documents to return the closest ones.
This technique presents some disadvantages like having a large em-
bedding table [21, 22]. Generative retrieval is a recently proposed
technique that aims to fix some of the issues of the traditional ap-
proach by producing token by token either the title, name, or the
document id string of the document. Cao et al. [5] proposed GENRE
for entity retrieval, which used a transformer-based architecture to
return, token-by-token, the name of the entity referenced to in a
given query. Tay et al. [33] proposed DSI for document retrieval,
which was the first system to assign structured semantic DocIDs
to each document. Then given a query, the model autoregressively
returned the DocID of the document token-by-token. The DSI work
marks a paradigm shift in IR to generative retrieval approaches and
is the first successful application of an end-to-end Transformer for
retrieval applications. Subsequently, Lee et al. [22] show that gen-
erative document retrieval is useful even in the multi-hop setting,
where a complex query cannot be answered directly by a single
document, and hence their model generates intermediate queries,
in a chain-of-thought manner, to ultimately generate the output for
the complex query. Wang et al. [36] supplement the hierarchical

𝑘-means clustering based semantic DocIDs of Tay et al. [33] by
proposing a new decoder architecture that specifically takes into
account the prefixes in semantic DocIDs. In CGR [21], the authors
propose a way to take advantage of both the bi-encoder technique
and the generative retrieval technique, by allowing the decoder, of
their encoder-decoder-based model, to learn separate contextualized
embeddings which store information about documents intrinsically.
To the best of our knowledge, we are the first to use generative
Semantic IDs created using an auto-encoder (RQ-VAE [20, 42]) for
retrieval models.

Vector Quantization. We refer to Vector Quantization as the pro-
cess of converting a high-dimensional vector into a low-dimensional
tuple of codewords. One of the most straightforward techniques
uses hierarchical clustering, such as the one used in [33], where
clusters created in a particular iteration are further partitioned
into sub-clusters in the next iteration. An alternative popular ap-
proach is Vector-Quantized Variational AutoEncoder (VQ-VAE),
which was introduced in [34] as a way to encode natural images
into a sequence of codes. The technique works by first passing
the input vector (or image) through an encoder that reduces the
dimensionality. The smaller dimensional vector is partitioned and
each partition is quantized separately, thus resulting in a sequence
of codes: one code per partition. These codes are then used by a
decoder to recreate the original vector (or image).

RQ-VAE [20, 42] applies residual quantization to the output of
the encoder of VQ-VAE to achieve a lower reconstruction error. We
discuss this technique in more detail in Subsection 3.1.

Locality Sensitive Hashing (LSH) [13, 14] is a popular tech-
nique used for clustering and approximate nearest neighbor search.
The particular version that we use in this paper for clustering is
SimHash [1], which uses random hyperplanes to create binary
vectors which serve as hashes of the items. Because it has low com-
putational complexity and is scalable [13], we use this as a baseline
technique for vector quantization.

3 PROPOSED FRAMEWORK
Our proposed technique consists of two components:

(1) Semantic ID generation using content features. This involves
mapping the item content features to embedding vectors,
which are further quantized into a tuple of semantic code-
words. We call this tuple the item’s Semantic ID.

(2) Training a generative recommender system on Semantic IDs.
A Transformer based sequence-to-sequence model is trained
on the sequences of semantic IDs corresponding to the items
in the user’s interaction history to predict the Semantic ID
of the next item in the sequence.

Next, we explain these components in detail.

3.1 Semantic ID Generation
In this section, we describe the Semantic ID generation process for
the items in the recommendation corpus. We assume that each item
has associated content features that capture useful semantic infor-
mation (e.g. titles or descriptions or images). Moreover, we assume
that we have access to a pre-trained content encoder to generate

3
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a semantic embedding 𝒙 ∈ R𝑑 . For example, general-purpose pre-
trained text encoders such as Sentence-T5 [25] and BERT [7] can
be used to convert an item’s text description to embeddings. In this
work, we use the textual description of items as content features
and use Sentence-T5 [25] encoder on this textual description. The
semantic embeddings are then quantized to generate a Semantic
ID for each item. Figure 2a gives a high-level overview of the pro-
cess. This approach is similar to [12], where Hou et al. generate
embeddings with a BERT encoder but the way they quantize the
embeddings is different from ours.

We define a Semantic ID to be a tuple of codewords of length
𝑚. Each entry of the tuple, that is, each codeword can come from
a different codebook. The number of items that the Semantic IDs
can represent uniquely is thus equal to the product of the codebook
sizes. While different techniques to generate Semantic IDs result in
the codes having different semantic properties or guarantees, we
want them to have the following property in general: Similar items
(items with similar content features or whose semantic embeddings are
close) should have overlapping codewords. For example, an item with
Semantic ID (10, 21, 35) should bemore similar to onewith Semantic
ID (10, 21, 40), than an item that is represented as (10, 23, 32). Next,
we discuss the quantization scheme RQ-VAE, which is used for
Semantic ID generation.

3.1.1 RQ-VAE for Semantic IDs. Residual-Quantized Variational
AutoEncoder (RQ-VAE) [42] is a multi-stage vector quantizer that
applies quantization on residuals at multiple levels to generate a
tuple of codewords (aka Semantic IDs). The Autoencoder jointly
trains the codebook and the encoder-decoder to reconstruct the
input using only Semantic IDs. Figure 3 illustrates the process of
generating Semantic IDs through residual quantization.

RQ-VAE first encodes the input 𝒙 via an encoder E to learn a
latent representation 𝒛 := E(𝒙). At the zeroth level (𝑑 = 0), the
initial residual is simply defined as 𝒓0 := 𝒛. At each level 𝑑 , we have
a codebook C𝑑 := {𝒆𝑘 }𝐾𝑘=1, where 𝐾 is the codebook size. Then,
𝒓0 is quantized by mapping it to the nearest embedding from that
level’s codebook. The index of the closest embedding 𝒆𝑐𝑑 at 𝑑 = 0,
i.e., 𝑐0 = argmin𝑖 ∥𝒓0 − 𝒆𝑘 ∥, represents the zeroth codeword. For
the next level 𝑑 = 1, the residual is defined as 𝒓1 := 𝒓0 − 𝒆𝑐0 . Then,
similar to the zeroth level, the code for the first level is computed
by using the codebook for the first level. This process is repeated
iteratively𝑚 times to get a tuple of𝑚 codewords that represent the
Semantic ID. This recursive approach approximates the input from
a coarse-to-fine granularity. Note that we chose to use a separate
codebook of size 𝐾 for each of the 𝑚 levels, instead of using a
single,𝑚-times larger codebook. This design choice was motivated
to avoid collisions between codewords at different granularity since
the average norm of residuals decreases with increasing levels.

Once we have the Semantic ID (𝑐0, . . . , 𝑐𝑚−1), the quantized
representation of 𝒛 is computed as 𝒛̂ :=

∑𝑚−1
𝑑=0 𝒆𝑐𝑖 . This vector, 𝒛̂, is

passed to the decoder, which tries to recreate the input 𝒙 using 𝒛̂.

The loss that we use to train the RQ-VAE is as follows:

L(𝒙) := Lrecon + Lrqvae, where

Lrecon := ∥𝒙 − 𝒙̂ ∥2 and

Lrqvae :=
𝑚−1∑
𝑑=0

∥sg[𝒓𝑖 ] − 𝒆𝑐𝑖 ∥2 + 𝛽 ∥𝒓𝑖 − sg[𝒆𝑐𝑖 ] ∥2 .

Here 𝒙̂ is the output of the decoder, and sg is the stop-gradient
operation [34]. Note that this loss jointly trains the encoder, decoder,
and the codebook.

As proposed in [42], to prevent RQ-VAE from a codebook col-
lapse, where most of the input gets mapped to only a few codebook
vectors, we use k-means clustering-based initialization for the code-
book. More specifically, we apply the k-means algorithm on the
first training batch and use the centroids as initialization.

3.1.2 Other options for quantization. A simple alternative to gen-
erating Semantic IDs is to use Locality Sensitive Hashing (LSH).
We perform an ablation study in Section 4.3.2 where we find that
RQ-VAE indeed works better than LSH. Another option is to use k-
means clustering hierarchically [33], but it loses semantic meaning
between different clusters [36]. We also tried VQ-VAE, and while it
performs similarly to RQ-VAE for generating the candidates during
retrieval, it loses the hierarchical nature of the IDs which confers
many new capabilities as discussed in Section 4.4.

3.1.3 Handling Collisions. For retrieval, we would like to avoid
collisions and assign unique IDs for items. Depending on the distri-
bution of semantic embeddings, the choice of codebook size, and
the length of codewords, collisions may still occur. For the hyper-
parameters we used (described in Section 4.1.3), we do observe a
few items in the dataset with very similar semantic embeddings
have the same Semantic ID assigned to them.

To remove the collisions we append an extra token at the end of
the Semantic IDs to make them unique. For example, if two items
share the Semantic ID (12, 24, 52), we append extra tokens to differ-
entiate between them, hence they are represented as (12, 24, 52, 0)
and (12, 24, 52, 1).

3.2 Generative Retrieval with Semantic IDs
We construct item sequences for every user by sorting chronologi-
cally the items they have interacted with. Then, given a sequence
of the form (item1, . . . , item𝑛), the recommender system’s task is
to predict the next item item𝑛+1. For this, we propose a generative
approach that directly predicts the Semantic IDs of items.

Formally, let (𝑐𝑖,0, . . . , 𝑐𝑖,𝑚−1) be the𝑚-length Semantic ID for
item𝑖 . Then, we convert the item sequence to the sequence
(𝑐1,0, . . . , 𝑐1,𝑚−1, 𝑐2,0, . . . , 𝑐2,𝑚−1, ¤,𝑐𝑛,0, . . . , 𝑐𝑛,𝑚−1). The sequence-to-
sequencemodel is then trained to predict the Semantic ID of item𝑛+1,
which is (𝑐𝑛+1,0, . . . , 𝑐𝑛+1,𝑚−1). Hence, this formulation does not
need to make any major modifications to existing sequence-to-
sequence model architectures to train them for generative rec-
ommendations. Once we have the predicted tuple of codewords
(𝑐𝑛+1,0, . . . , 𝑐𝑛+1,𝑚−1), we simply look up the item to which this Se-
mantic ID corresponds to. There is a possibility that the generated
Semantic ID does not match any item in the dataset. However, as
we observe in Figure 6, the probability of such an event is very low.
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Figure 3: RQ-VAE: In the figure, the vector output by the DNN Encoder, say 𝒓0 (represented by the blue bar), is fed to the quantizer, which
works iteratively. First, the closest vector to 𝒓0 is found in the first level codebook. Let this closest vector be 𝒆𝑐0 (represented by the red bar).
Then, the residual error is computed as 𝒓1 := 𝒓0 − 𝒆𝑐0 . This is fed into the second level of the quantizer, and the process is repeated: The
closest vector to 𝒓1 is found in the second level, say 𝒆𝑐1 (represented by the green bar), and then the second level residual error is computed as
𝒓2 = 𝒓1 − 𝒆′𝑐1 . Then, the process is repeated for a third time on 𝒓2. The semantic codes are computed as the indices of 𝒆𝑐0 , 𝒆𝑐1 , and 𝒆𝑐2 in their
respective codebooks. In the example shown in the figure, this results in the code (7, 1, 2) .

4 EXPERIMENTS
We conduct exhaustive experiments to answer the following re-
search questions (RQs):

• RQ1: How our proposed framework (TIGER) performs on
the sequential recommendation task compared to the base-
line methods?

• RQ2: Is the choice of our item representation with Semantic
IDs meaningful?

• RQ3: What new recommendation capabilities emerge with
this new paradigm?

4.1 Experimental Setup
In this section, we describe the datasets, evaluation metrics, and
implementation details of the TIGER framework.

4.1.1 Datasets. We evaluate the proposed framework on three
public real-world benchmarks from the Amazon Product Reviews
dataset [10], containing user reviews and item metadata from May
1996 to July 2014. In particular, we use three categories of the Ama-
zon Product Reviews dataset for the sequential recommendation
task: “Beauty”, “Sports and Outdoors”, and “Toys and Games”. Ta-
ble 2 summarizes the statistics of the datasets. We use users’ review
history to create item sequences sorted by timestamp and filter out
users with less than 5 reviews. Following the standard evaluation
protocol [8, 17], we use the leave-one-out strategy for evaluation.
For each item sequence, the last item is used for testing, the item
before the last is used for validation, and the rest is used for training.
During training, we limit the number of items in a user’s history to
20.

4.1.2 Evaluation Metrics. We use top-k Recall (Recall@K) and Nor-
malized Discounted Cumulative Gain (NDCG@K) with 𝐾 = 5, 10
to evaluate the recommendation performance.

4.1.3 Implementation Details. Here we discuss the implementation
details of the RQ-VAE model and the sequence-to-sequence model.
We will release the source code of TIGER upon acceptance.

RQ-VAE Model. As discussed in section 3.1.1, RQ-VAE is used to
quantize the semantic embedding of an item.We use the pre-trained
Sentence-T5 model to obtain the semantic embedding of each item
in the dataset. In particular, we use item’s content features such
as title, price, brand, and category to construct a sentence, which
is then passed to the pre-trained Sentence-T5 model to obtain the
item’s semantic embedding of 768 dimension.

The RQ-VAEmodel consists of three components: a DNN encoder
that encodes the input semantic embedding into a latent represen-
tation, residual quantizer which outputs a quantized representation,
and a DNN decoder that decodes the quantized representation back
to the semantic input embedding space. The encoder has three
intermediate layers of size 512, 256 and 128 with ReLU activation,
with a final latent representation dimension of 32. To quantize this
representation, three levels of residual quantization is done. For
each stage of the quantization, a codebook of cardinality 256 is
maintained, where each vector in the codebook has a dimension of
32. When computing the total loss, we use 𝛽 = 0.25. The RQ-VAE
model is trained for 20k epochs to ensure high codebook usage
(≥ 80%). We use Adagrad optimizer with a learning rate of 0.4 and
a batch size of 1024. Upon training, we use the learned encoder and
the quantization module to generate a 3-tuple Semantic ID for each
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Table 1: Performance comparison on the sequential recommendation task. The last rowdepicts the improvement observedwithTIGER relative
to the best baseline. We use bold and underline to denote the best and the second-best metric.

Methods
Sports and Outdoors Beauty Toys and Games

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

Ba
se
lin

es

P5 [44] 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
Caser [32] 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
HGN [24] 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
GRU4Rec [11] 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084
BERT4Rec [30] 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099
FDSA [44] 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
SASRec [17] 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374
S3-Rec [46] 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376

TIGER [Ours] 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432
+5.22% +12.55% +3.90% +10.29% +17.31% +29.04% +0.15% +17.43% +12.53% +21.24% +1.71% +14.97%

Table 2: Dataset statistics for the three real-world benchmarks.

Dataset # Users # Items Sequence Length

Mean Median

Beauty 22,363 12,101 8.87 6
Sports and Outdoors 35,598 18,357 8.32 6
Toys and Games 19,412 11,924 8.63 6

item. To avoid multiple items being mapped to the same Semantic
ID, we add a unique 4𝑡ℎ code for items that share the same first
three codewords, 𝑖 .𝑒 . two items associated with a tuple (7, 1, 4)
are assigned (7, 1, 4, 0) and (7, 1, 4, 1) respectively (if there are no
collisions, we still assign 0 as the fourth codeword). This results in
a unique Semantic ID of length 4 for each item in the recommen-
dation corpus. This is the Semantic ID generation algorithm that
we use in TIGER. Notably, we observe less than 40 items sharing
the same first three codewords, and hence the cardinality of the 4𝑡ℎ
codeword is at most 40.

Sequence-to-Sequence Model. We use the open-sourced T5X
framework [28] to implement our transformer based encoder-decoder
architecture. To allow the model to process the input for the se-
quential recommendation task, we add semantic codewords to the
vocabulary of the sequence-to-sequence model. In particular, we
add 1024 (256×4) tokens to the vocabulary. In addition to the seman-
tic codewords, we also add user-specific tokens to the vocabulary.
To keep the vocabulary size limited, we only added 2000 tokens for
user IDs. We use the Hashing Trick [37] to map the raw user ID to
one of the 2000 user ID tokens. We construct the input sequence as
the user Id token followed by the sequence of Semantic ID tokens
corresponding to a given user’s item interaction history. We found
that adding user ID to the input, allows the model to personalize
the recommended items.

We use 4 layers each for the encoder and decoder models with
6 self-attention heads of dimension 64 in each layer. We used the
ReLU activation function for all the layers. The MLP and the input
dimension was set as 1024 and 128, respectively. We used a dropout
of 0.1. Overall, the model has around 13 million parameters. We
train this model for 200k steps for the “Beauty” and “Sports and
Outdoors” dataset. Due to the smaller size of the “Toys and Games”
dataset, it is trained only for 100k steps. We use a batch size of 256.
The learning rate is 0.01 for the first 10k steps and then follows an
inverse square root decay schedule.

4.2 Performance on Sequential
Recommendation (RQ1)

We first evaluate our model on the sequential recommendation
task and compare the performance of TIGER against existing state-
of-the-art sequential recommendation models. Next, we briefly
describe the recent baselines proposed for the sequential recom-
mendation task and discuss the performance of the all the models.

4.2.1 Baselines. We compare our proposed framework for gen-
erative retrieval with several other sequential recommendation
methods.
• GRU4Rec [11] is the first RNN-based approach that uses a cus-
tomized GRU for the sequential recommendation task.

• Caser [32] uses a CNN architecture for capturing high-order
Markov Chains by applying horizontal and vertical convolu-
tional operations for sequential recommendation.

• HGN [24]: Hierarchical Gating Network (HGN) captures the
long-term and short-term user interests via a new gating archi-
tecture.

• SASRec [17]: Self-Attentive Sequential Recommendation (SAS-
Rec) uses a causal mask Transformer to model a user’s sequen-
tial interactions.

• BERT4Rec [30]: BERT4Rec addresses the limitations of uni-
directional architectures by using a bi-directional self-attention
Transformer for the recommendation task.

• FDSA [44]: Feature-level Deeper Self-Attention Network (FDSA)
incorporates item features in addition to the item embeddings
as part of the input sequence in the Transformers.

• S3-Rec [46]: Self-Supervised Learning for Sequential Recom-
mendation (S3-Rec) proposes pre-training a bi-directional Trans-
former on self-supervision tasks to improve the sequential rec-
ommendation.

• P5 [8]: P5 is a recent method that uses a pretrained Large Lan-
guage Model (LLM) to unify different recommendation tasks in
a single model.
Notably all the baselines, with the exception of P5, learn a high-

dimensional vector space using dual encoder, where the user’s past
item interactions and the candidate items are encoded as a high-
dimensional representation and Maximum Inner Product Search
(MIPS) is used to retrieve the next candidate item that the user will
potentially interact with. In contrast, our novel generative retrieval
framework directly predicts the item’s Semantic ID token-by-token
using a sequence-to-sequence model.
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(a) The ground-truth category distribution for all the items in
the dataset colored by the value of the first codeword 𝑐1.

(b) The ground-truth category distributions for all the items having the Semantic ID as (𝑐1, ∗, ∗) ,
where 𝑐1 ∈ {1, 2, 3, 4}. The categories are color-coded based on the second semantic token 𝑐2.

Figure 4: Qualitative study of RQ-VAE Semantic IDs (𝑐1, 𝑐2, 𝑐3, 𝑐4) on the Amazon Beauty dataset. We show that the ground-truth categories are
distributed across different Semantic tokens. Moreover, the RQVAE semantic IDs form a hierarchy of items, where the first semantic token
(𝑐1) corresponds to coarse-level category, while second/third semantic token (𝑐2/𝑐3) correspond to fine-grained categories.

4.2.2 Recommendation Performance. We perform an extensive
analysis of our proposed TIGER on the sequential recommendation
task and compare against several recent baselines. The results for all
baselines, except P5, are taken from the publicly accessible results 1
made available by Zhou et al. [46]. For P5, we use the source code2
made available by the authors. However, for a fair comparison, we
updated the data pre-processing method to be consistent with the
other baselines and our method. We provide further details related
to our changes in Appendix A.

The results are shown in Table 1. We observe that TIGER con-
sistently outperforms the existing baselines. We see significant
improvement across all the three benchmarks that we considered.
In particular, TIGER performs considerably better on the Beauty
benchmark compared to the second-best baseline with up to 29%
improvement in NDCG@5 compared to SASRec and 17.3% improve-
ment in Recall@5 compared to S3-Rec. Similarly on the Toys and
Games dataset, TIGER is 21% and 15% better in NDCG@5 and
NDCG@10, respectively.

4.3 Item Representation (RQ2)
In this section, we analyze several important characteristics of
RQ-VAE Semantic IDs. In particular, we first perform a qualita-
tive analysis to observe the hierarchical nature of Semantic IDs
in Section 4.3.1. Next, we evaluate the importance of our design
choice of using RQ-VAE for quantization by contrasting the per-
formance with an alternative hashing-based quantization method
in section 4.3.2. Finally, we perform an ablation in section 4.3.3 to
study the importance of using Semantic IDs by comparing TIGER
with a sequence-to-sequence model that uses Random ID for item
representation.

1https://github.com/aHuiWang/CIKM2020-S3Rec
2https://github.com/jeykigung/P5

4.3.1 Qualitative Analysis. We analyze the RQ-VAE Semantic IDs
learned for the Amazon Beauty dataset in Figure 4. For exposition,
we set the number of RQ-VAE levels as 3 with a codebook size of 4,
16, and 256 respectively, i.e. for a given Semantic ID (𝑐1, 𝑐2, 𝑐3) of
an item, 0 ≤ 𝑐1 ≤ 3, 0 ≤ 𝑐2 ≤ 15 and 0 ≤ 𝑐3 ≤ 255.

In Figure 4a, we annotate each item’s category using 𝑐1 to vi-
sualize 𝑐1-specific categories in the overall category distribution
of the dataset. As shown in Figure 4a, 𝑐1 captures the high-level
category of the item. For instance, 𝑐1 = 3 contains most of the
products related to “Hair”. Similarly, majority of items with 𝑐1 = 1
are “Makeup” and “Skin” products for face, lips and eyes.

We also visualize the hierarchical nature of RQ-VAE Semantic
IDs by fixing 𝑐1 and visualizing the category distribution for all
possible values of 𝑐2 in Figure 4b. Once again, we found that the
second codeword 𝑐2 can further categorize the high-level semantics
captured with 𝑐1 into fine-grained categories.

The hierarchical nature of Semantic IDs learned by RQ-VAE
opens a wide-array of new capabilities which are discussed in Sec-
tion 4.4. As opposed to existing recommendation systems that learn
item embeddings based on random atomic IDs, TIGER uses Seman-
tic IDs where semantically similar items have overlapping code-
words, which allows the model to effectively share knowledge from
semantically similar items in the dataset.

4.3.2 Hashing vs. RQ-VAE for Semantic ID Generation. In this sec-
tion, we study the importance of RQ-VAE in our framework by com-
paring RQ-VAE against Locality Sensitive Hashing (LSH) [1, 13, 14]
for Semantic ID generation. LSH is a popular hashing technique
that can be easily adapted to work for our setting. To generate LSH
Semantic IDs, we use ℎ random hyperplanes𝒘1, . . . ,𝒘ℎ to perform
a random projection of the embedding vector 𝒙 and compute the
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Table 3: Ablation study for different ID generation techniques for generative retrieval. We show that RQ-VAE Semantic IDs perform signifi-
cantly better compared to hashing-based Semantic IDs and Random IDs.

Methods
Sports and Outdoors Beauty Toys and Games

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

Random ID 0.007 0.005 0.0116 0.0063 0.0296 0.0205 0.0434 0.0250 0.0362 0.0270 0.0448 0.0298
LSH Semantic ID 0.0215 0.0146 0.0321 0.0180 0.0379 0.0259 0.0533 0.0309 0.0412 0.0299 0.0566 0.0349
RQ-VAE Semantic ID 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432

following binary vector: (1𝒘⊤
1 𝒙>0

, . . . , 1𝒘⊤
ℎ
𝒙>0). This vector is con-

verted into an integer code as 𝑐0 =
∑ℎ
𝑖=1 2

𝑖−11𝒘⊤
𝑖
𝒙>0. This process

is repeated 𝑚 times using an independent set of random hyper-
planes, resulting in𝑚 codewords (𝑐0, 𝑐1, . . . , 𝑐𝑚−1), which we refer
to as the LSH-based Semantic ID.

In Table 3, we compare the performance of LSH Semantic ID
with our proposed RQ-VAE Semantic ID. In this experiment, for
LSH Semantic IDs, we used ℎ = 8 random hyperplanes and set
𝑚 = 4 to be comparable against RQ-VAE in terms of cardinalities.
The parameters for the hyperplanes are randomly sampled from a
standard normal distribution, which ensures that the hyperplanes
are spherically symmetric. Our results show that RQ-VAE consis-
tently outperforms LSH. This illustrates that learning Semantic IDs
via a non-linear, Deep Neural Network (DNN) architecture yields
better quantization than using random projections, given the same
content-based semantic embedding.

4.3.3 Random ID vs. Semantic ID. We also compare the importance
of Semantic IDs in our generative retrieval recommender system. In
particular, we compare randomly generated IDs with the Semantic
IDs. To generate the Random ID baseline, we assign 𝑚 random
codewords to each item. A Random ID of length 𝑚 for an item
is simply (𝑐1, . . . , 𝑐𝑚), where 𝑐𝑖 is sampled uniformly at random
from {1, 2, . . . , 𝐾}. We set𝑚 = 4, and 𝐾 = 255 for the Random ID
baseline to make the cardinality similar to RQ-VAE Semantic IDs.
A comparison of Random ID against RQ-VAE and LSH Semantic
IDs is shown in Table 3. We see that Semantic IDs consistently
outperform Random ID baseline, highlighting the importance of
leveraging content-based semantic information.

4.4 New Capabilities (RQ3)
We describe two new capabilities that directly follow from our
proposed generative retrieval framework, namely cold-start rec-
ommendations and recommendation diversity. We refer to these
capabilities as “new” since existing sequential recommendation
models (See Section 4.2.1) cannot be directly used to satisfy these
real-world use cases. We believe these capabilities result from a
synergy between RQ-VAE based Semantic IDs and the generative
retrieval approach of our framework. We discuss how TIGER is
used in these settings in the following sections.

4.4.1 Cold-Start Recommendation. In this section, we study the
cold-start recommendation capability of our proposed framework.
Due to the fast-changing nature of the real-world recommenda-
tion corpus, new items are constantly introduced. Since newly
added items lack user impressions in the training corpus, existing
recommendation models that use a random atomic ID for item rep-
resentation fail to retrieve new items as potential candidates. In
contrast, TIGER can easily perform cold-start recommendations in
an end-to-end fashion.

(a) Recall@K vs. K, when 𝜖 = 0.1. (b) Recall@10 vs. 𝜖 .

Figure 5: Performance in the cold-start retrieval setting.

For this analysis, we consider the Beauty dataset from Amazon
Reviews. To simulate newly added items, we remove 5% of test
items from the training data split. We refer to these removed items
as unseen items. Removing the items from the training split ensures
there is no data leakage with respect to the unseen items.

As before, we use Semantic ID of length 4 to represent the items,
where the first 3 tokens are generated using RQ-VAE and the 4𝑡ℎ
token is used to ensure a unique ID exists for all the seen items. We
train the RQ-VAE quantizer and the sequence-to-sequence model
on the training split. Once trained, we use the RQ-VAE model to
generate the Semantic IDs for all the items in the dataset, including
any unseen items in the item corpus.

Given a Semantic ID (𝑐1, 𝑐2, 𝑐3, 𝑐4) predicted by the model, we
retrieve the seen item having the same corresponding ID. Note
that by definition, each Semantic ID predicted by the model can
match at most one item in the training dataset. Additionally, unseen
items having the same first three semantic tokens, 𝑖 .𝑒 . (𝑐1, 𝑐2, 𝑐3) are
included to the list of retrieved candidates. Finally, when retrieving
a set of top-K candidates, we introduce a hyperparameter 𝜖 which
specifies the maximum proportion of unseen items chosen by our
framework.

We compare the performance of TIGER with a k-Nearest Neigh-
bors (KNN) approach on the cold-start recommendation setting in
Figure 5. For KNN, we use the semantic representation space to
perform the nearest-neighbor search. We refer to the KNN-based
baseline as Semantic_KNN. Figure 5a shows that our framework
with 𝜖 = 0.1 consistently outperforms Semantic_KNN for all Re-
call@K metrics. In Figure 5b, we provide a comparison between our
method and Semantic_KNN for various values of 𝜖 . For all settings
of 𝜖 ≥ 0.1, our method outperforms the baseline.

4.4.2 Recommendation diversity. While Recall and NDCG are the
primary metrics used to evaluate a recommendation system, di-
versity of predictions is another critical objective of interest. A
recommender system with poor diversity can be detrimental to the
long-term engagement of users. In this section, we discuss how our
generative retrieval framework can be used to predict diverse items.
We show that temperature-based sampling during the decoding
process can be effectively used to control the diversity of model
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Table 4: Recommendation diversity with temperature-based decoding using generative retrieval.

Target Category Most-common Categories for top-10 predicted items

T = 1.0 T = 2.0

Hair Styling Products Hair Styling Products Hair Styling Products, Hair Styling Tools, Skin Face
Tools Nail Tools Nail Tools Nail, Makeup Nails
Makeup Nails Makeup Nails Makeup Nails, Skin Hands & Nails, Tools Nail
Skin Eyes Skin Eyes Hair Relaxers, Skin Face, Hair Styling Products, Skin Eyes
Makeup Face Tools Makeup Brushes, Makeup Face Tools Makeup Brushes, Makeup Face, Skin Face, Makeup Sets, Hair Styling Tools
Hair Loss Products Hair Loss Products, Skin Face, Skin Body Skin Face, Hair Loss Products, Hair Shampoos, Hair & Scalp Treatments, Hair Conditioners

Table 5: Recommendation diversity in the model predictions. We
evaluate the entropy of the distribution of categories that themodel
predicts in the Amazon Beauty dataset. A higher entropy corre-
sponds more diverse items predicted by the model.

Temperature Entropy@10 Entropy@20 Entropy@50

T = 1.0 0.76 1.14 1.70
T = 1.5 1.14 1.52 2.06
T = 2.0 1.38 1.76 2.28

predictions. While temperature-based sampling can be applied to
any existing recommendation model, TIGER allows sampling across
various levels of hierarchy owing to the properties of RQ-VAE Se-
mantic IDs. For instance, sampling the first token of the Semantic
ID allows retrieving items from coarse-level categories, while sam-
pling a token from second/third token allows sampling items within
a category.

We quantitatively measure the diversity of predictions using
Entropy@K metric, where the entropy is calculated for the distri-
bution of the ground-truth categories of the top-K items predicted
by the model. We report the Entropy@K for various temperature
values in Table 5. We observe that temperature-sampling in the de-
coding stage can be effectively used to increase the diversity in the
ground-truth categories of the items. We also perform a qualitative
analysis in Table 4.

5 DISCUSSION
Invalid IDs. Since the model decodes the codewords of the tar-
get Semantic ID autoregressively, it is possible that the model can
predict an invalid ID (i.e., it may not map to any item in the rec-
ommendation dataset). In our experiments, we used semantic IDs
of length 4 with each codeword having a cardinality of 256 (i.e.,
codebook size = 256 for each level). The number of possible IDs
spanned by this combination = 2564, which is approx. 4 trillion. On
the other hand, the number of items in the datasets we consider
is 10K-20K (See Table 2). Even though the number of valid IDs is
only a fraction of all complete ID space, we observe that the model
almost always predicts the valid IDs. We visualize the fraction of
invalid IDs produced by TIGER as a function of the number of
retrieved items 𝐾 in Figure 6.

Effects of Semantic ID length and codebook size. We tried
varying the Semantic ID length and codebook size, such as having
an ID consisting of 6 codewords each from a codebook of size 64.We
noticed that the recommendation metrics for TIGER were robust
to these changes. However, note that the input sequence length
increases with longer IDs (i.e., more codewords per ID), which
makes the computation more expensive for our transformer-based

5 10 15 20
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0.75

1.00
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2.00
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va

lid
 ID
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Figure 6: % of invalid IDswhen generating Semantic IDs using Beam
search for various values of𝐾 for theBeauty dataset. As shown, only
2̃% of the IDs are invalid when retrieving the top-20 items.

sequence-to-sequence model.

Inference cost. Despite the remarkable success of our model on
the sequential recommendation task, we note that our model is
more expensive than ANN-based models during inference (not
during training) due to the use of beam search for autoregressive
decoding. We emphasize that optimizing the computational effi-
ciency of TIGER was not the main objective of this work. Instead,
our work opens up a new area of research: Recommender Systems
based on Generative Retrieval. As part of future work, we will con-
sider ways to make the model smaller or explore other ways of
leveraging Transformer’s capabilities, such as building a unified
model across multiple datasets and tasks.

6 CONCLUSION
This paper proposed a novel paradigm, called TIGER, to retrieve
candidates in recommender systems using a generative model. Un-
derpinning this method is a novel semantic ID representation for
items, which uses a hierarchical quantizer (RQ-VAE) on content
embeddings to generate tokens that form the semantic IDs. Our
method is end-to-end, i.e., a single model can be used to train and
serve without creating an index — the transformer memory acts as
the index [33]. We note that the cardinality of our embedding table
does not grow linearly with the cardinality of item space, which
works in our favor compared to systems that need to create large
embedding tables during training or generate an index for every
single item. Through experiments on three datasets, we show that
our model can achieve SOTA results and generalizes well to new
and unseen items.

Our work enables many new research directions. For example,
it will be interesting to explore how these Semantic IDs can be
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integrated with LLMs to enable muchmore powerful conversational
recommender models. We will also explore how to improve the
Semantic ID representation and how to use it for ranking.
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A MODIFICATIONS TO THE P5 DATA PREPROCESSING
The P5 source code 3 pre-processes the Amazon dataset to first create sessions for each user containing the chronologically ordered list of
items the user reviewed. After creating these sessions, the original item IDs from the dataset are remapped to integers 1, 2, 3, . . . 4. Hence,
the first item in the first session gets an id of ‘1’, the second item, if not seen before, gets an id of ‘2’, and so on. This results in the creation of
a sequential dataset where a lot of the sequences are of the form 𝑎, 𝑎 + 1, 𝑎 + 2, . . . . Since LLMs like T5 [27] are known to be able to recognize
simple consecutive integer sequences as above, this dataset introduces a bias which might result in higher metrics. Note that this dataset
would not have been a problem for non-LLM based recommender systems since they do not intrinsically understand integer sequences.
To remove this bias, instead of assigning sequentially increasing integer ids to items, we assigned them in a random manner, and then
created sequence datasets for training and evaluation. The rest of the code for P5 was kept identical to the source code provided in the paper.
The results for this dataset are reported in Table 6 in the row ‘P5’. We also implemented a version of P5 ourselves from scratch, for only
sequential recommendation task, whose results for the dataset described above are mentioned in the row ‘P5-ours’.

We were also able to verify in our P5 implementation that using consecutive integer sequences for the item IDs helped us get equivalent
or better metrics than those reported in P5.

Table 6: Results of P5[8] with changes to prevent consecutive integer sequences of the form described in Appendix A

Methods
Sports and Outdoors Beauty Toys and Games

Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10

P5 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
P5-ours 0.0107 0.0076 0.01458 0.0088 0.035 0.025 0.048 0.0298 0.018 0.013 0.0235 0.015

3https://github.com/jeykigung/P5
4https://github.com/jeykigung/P5/blob/0aaa3fd8366bb6e708c8b70708291f2b0ae90c82/preprocess/data_preprocess_amazon.ipynb
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